Lecture 11. Linear Second-Order Equations with Constant Coefficients Part 2

Review: Recall in Lecture¹, we talked about 2nd-order homogeneous equations with constant coefficients of the following form

$$
ay'' + by' + cy = 0 \tag{1}
$$

To solve for y , we first solve for r from the **characteristic equation**

$$
ar^2 + br + c = 0,
$$

which has roots $r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Case 1. r_1 , r_2 are real and $r_1 \neq r_2$ ($b^2 - 4ac > 0$):

General solution: $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$

Case 2. r_1 , r_2 are real and $r_1 = r_2 (b^2 - 4ac = 0)$:

General solution: $y = (c_1 + c_2 x)e^{r_1 x}$

In this lecture, we will talk about the last case:

Case 3. r_1 , r_2 are complex numbers ($b^2 - 4ac < 0$): (Not covered in Lecture 10)

We can write $r_{1,2}=A\pm Bi$.

General solution: $y = e^{Ax} (c_1 \cos Bx + c_2 \sin Bx)$

Euler's Formula for Complex Numbers

 $i=\sqrt{-1}$

Euler's formula: $e^{i\theta} = \cos\theta + i\sin\theta$, θ **6** \mathcal{R}

• $e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos y + i \sin y)$, where $z = x + iy$ is any complex number.

Theorem 7 Complex Roots

If $r_{1,2}=A\pm Bi$ are roots of the characteristic equation (1), then the corresponding part to the general solution

 $y=e^{Ax}(c_1\cos Bx+c_2\sin Bx)$

Remark: We have the above formula since

$$
\begin{aligned} y(x) &= C_1 e^{r_1 x} + C_2 e^{r_2 x} \\ &= C_1 e^{(A+Bi)x} + C_2 e^{(A-Bi)x} = C_1 e^{Ax} e^{Bix} + C_2 e^{Ax} e^{-Bix} \\ &= C_1 e^{Ax} \cdot (\cos Bx + i \sin Bx) + C_2 e^{Ax} (\cos Bx - i \sin Bx) \\ &= e^{Ax} \left[(C_1 + C_2) \cos Bx + i \left(C_1 - C_2 \right) \sin Bx \right] \\ &= e^{Ax} \left(c_1 \cos Bx + c_2 \sin Bx \right) \end{aligned}
$$

Example 1. Solve the following differential equation:

 $y'' + y' + y = 0$ ANS: The corresponding char. egn is $\gamma^2 + \gamma + 1 = 0$ Then $\Upsilon_{12} = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm \sqrt{3} \cdot \cancel{11}}{2} = \frac{-1 \pm \cancel{13} \cdot 1}{2}$ $= -\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$ By Thm 7. we have the general solution $M = e^{-\frac{1}{2}x} (c_1 \cos \frac{\sqrt{3}}{2}x + c_1 \sin \frac{\sqrt{3}}{2}x)$

Example 2. Find the general solution to the homogeneous differential equation

ANS:

$$
\frac{d^2y}{dt^2} - 20\frac{dy}{dt} + 125y = 0
$$

15: The corresponding *dr*: eqn is

$$
Y^2 - 20y + 125 = 0
$$

$$
Y_{1,2} = \frac{20 \pm \sqrt{20^2 + 4 \times 25}}{2} = \frac{20 \pm \sqrt{-100}}{2} = \frac{20 \pm \sqrt{-100}}{2} = 10 \pm 5i
$$

Thus we have the general solution $y(x)=e^{10x}(C_{1}cos5x+C_{2}sin5x)$ **Example 3.** What values of α and A make $y = A \cos \alpha t$ a solution to $y'' + 7y = 0$ such that $y'(1) = 4$?

ANS: Method 1. Plug the given
$$
y = A \cos \alpha t
$$
 into the equation $y'(4) = 4$.

\nThen solve $\forall r \alpha$ and A .

\nMethod 3. The correspond clear, $\forall q \beta$ is

\n
$$
r^{2} + 7 = 0 \Rightarrow r^{2} = -7 \Rightarrow r = \pm \sqrt{17} = \pm \sqrt{11} = 0 \pm \sqrt{11} = 0
$$
\nThus the general solution is

\n
$$
y(x) = \cos \sqrt{11} \times 1 + C_{2} \sin \sqrt{11} \times 1
$$
\nNote if we take $C_{2} \Rightarrow C_{1} \cos \sqrt{11} \times 1 + C_{2} \sin \sqrt{11} \times 1$

\nNote if we take $C_{2} \Rightarrow C_{3} \sin \sqrt{11} \times 1 + C_{4} \sin \sqrt{11} \times 1$

\nNote if we take $C_{3} \Rightarrow C_{4} \sin \sqrt{11} \times 1 + C_{5} \sin \sqrt{11} \times 1$

\nAlso, we need to have $y'(4) = 4$.

\nAs $y'(4) = 4$, $y'(4) = -C_{4} \sqrt{11} \sin \sqrt{11} \times 1$

\nAs $y'(4) = 4$, $y'(4) = -C_{6} \sqrt{11} \sin \sqrt{11} \times 1$

\nAs the solution of the form $y = A \cos \alpha \times \text{ satisfies the solution of the form $y = A \cos \alpha \times \text{ satisfies the condition. So $A = -\frac{4}{\sqrt{11} \sin \sqrt{11}} \text{ and } \alpha \in \sqrt{11}$$$

Solution using Method 1.

If $y = A \cos \alpha t$, then $y' = -\alpha A \sin \alpha t$ and $y'' = -\alpha^2 A \cos \alpha t$. Thus, if $y'' + 7y = 0$, then $-\alpha^2 A \cos \alpha t + 7A \cos \alpha t = 0$, so $A (7 - \alpha^2) \cos \alpha t = 0$. This is true for all t if $A=0$, or if $\alpha=\pm\sqrt{7}$. We also have the initial condition: $y'(1)=-\alpha A\sin\alpha=4.$ Notice that this equation will not work if $A=0$. If $\alpha=\sqrt{7}$, then $A=-\frac{4}{\sqrt{7}\sin{\sqrt{7}}}$. Similarly, if $\alpha = -\sqrt{7}$, we find the same value for A. Thus, the possible values are $A = -\frac{4}{\sqrt{7} \sin \sqrt{7}}$ and $\alpha = \pm \sqrt{7}$.

Exercise 4. Find y as a function of t if

$$
9y'' + 26y = 0,
$$

$$
y(0) = 2, \quad y'(0) = 4
$$

Solution.

The corresponding characteristic equation is

$$
9r^2+26=0.
$$

Thus we have

$$
r_{1,2}=\pm\frac{i\sqrt{26}}{3}
$$

So the general solution is

$$
y(x) = c_1 \cos\left(\frac{\sqrt{26}x}{3}\right) + c_2 \sin\left(\frac{\sqrt{26}x}{3}\right)
$$

Substitute $y(0) = 2$ into $y(x) = \cos\left(\frac{\sqrt{26}x}{3}\right)c_1 + \sin\left(\frac{\sqrt{26}x}{3}\right)c_2$, we get $c_1 = 2$
Substitute $y'(0) = 4$ into $y'(x) = -\frac{1}{3}\sqrt{26}\sin\left(\frac{\sqrt{26}x}{3}\right)c_1 + \frac{1}{3}\sqrt{26}\cos\left(\frac{\sqrt{26}x}{3}\right)$:

$$
\frac{\sqrt{26}c_2}{3} = 4
$$

Thus

$$
\begin{aligned} c_1 &= 2\\ c_2 &= 6\sqrt{\frac{2}{13}} \end{aligned}
$$

Therefore,

$$
y(x) = 2\cos\left(\frac{\sqrt{26}x}{3}\right) + 6\sqrt{\frac{2}{13}}\sin\left(\frac{\sqrt{26}x}{3}\right)
$$

Exercise 5. (Note this is the case 2 we covered in Lecture 9)

Solve the initial-value problem $\displaystyle{\frac{d^2y}{dt^2}+6\frac{dy}{dt}+9y=0,y(1)=0,y'(1)=1}$

Solution.

The corresponding characteristic equation is

$$
r^2+6y+9=0
$$

Thus

 $r_1 = r_2 = -3$

So we have the general solution

$$
y(x) = c_1 e^{-3x} + c_2 x e^{-3x}
$$

Substitute $y(1) = 0$ into $y(x)$:

$$
\frac{c_1}{e^3}+\frac{c_2}{e^3}=0
$$

Substitute $y'(1) = 1$ into $y' = -3e^{-3x}c_1 + e^{-3x}c_2 - 3e^{-3x}xc_2$:

$$
-\frac{3 c_1}{e^3}-\frac{2 c_2}{e^3}=1
$$

Soloving the two equations for c_1 and c_2 , we have

$$
\begin{gathered} c_1 = -e^3 \\ c_2 = e^3 \end{gathered}
$$

Therefore,

$$
y(x)=e^{-3x+3}(x-1)
$$